SCN5A Mutations in Brugada Syndrome Are Associated with Increased Cardiac Dimensions and Reduced Contractility
نویسندگان
چکیده
BACKGROUND The cardiac sodium channel (Na(v)1.5) controls cardiac excitability. Accordingly, SCN5A mutations that result in loss-of-function of Na(v)1.5 are associated with various inherited arrhythmia syndromes that revolve around reduced cardiac excitability, most notably Brugada syndrome (BrS). Experimental studies have indicated that Na(v)1.5 interacts with the cytoskeleton and may also be involved in maintaining structural integrity of the heart. We aimed to determine whether clinical evidence may be obtained that Na(v)1.5 is involved in maintaining cardiac structural integrity. METHODS Using cardiac magnetic resonance (CMR) imaging, we compared right ventricular (RV) and left ventricular (LV) dimensions and ejection fractions between 40 BrS patients with SCN5A mutations (SCN5a-mut-positive) and 98 BrS patients without SCN5A mutations (SCN5a-mut-negative). We also studied 18 age/sex-matched healthy volunteers. RESULTS SCN5a-mut-positive patients had significantly larger end-diastolic and end-systolic RV and LV volumes, and lower LV ejection fractions, than SCN5a-mut-negative patients or volunteers. CONCLUSIONS Loss-of-function SCN5A mutations are associated with dilatation and impairment in contractile function of both ventricles that can be detected by CMR analysis.
منابع مشابه
Genetic analysis of Brugada syndrome and congenital long-QT syndrome type 3 in the Chinese
BACKGROUND Brugada syndrome and congenital long-QT syndrome (LQTS) type 3 (LQT3) are 2 inherited conditions of abnormal cardiac excitability characterized clinically by an increased risk of ventricular tachyarrhythmias. SCN5A gene that encodes the cardiac sodium channel α subunit is responsible for the 2 diseases, and more work is needed to improve correlations between SCN5A genotypes and assoc...
متن کاملEpidural Analgesia with Ropivacaine during Labour in a Patient with a SCN5A Gene Mutation
SCN5A gene mutations can lead to ion channel defects which can cause cardiac conduction disturbances. In the presence of specific ECG characteristics, this mutation is called Brugada syndrome. Many drugs are associated with adverse events, making anesthesia in patients with SCN5A gene mutations or Brugada syndrome challenging. In this case report, we describe a pregnant patient with this mutati...
متن کاملMutational screening of SCN5A linked disorders in Polish patients and their family members.
Mutations in SCN5A lead to a broad spectrum of phenotypes, including the Long QT syndrome, Brugada syndrome, Idiopathic ventricular fibrillation (IVF), Sudden infant death syndrome (SIDS) (probably regarded as a form of LQT3), Sudden unexplained nocturnal death syndrome (SUNDS) and isolated progressive cardiac conduction defect (PCCD) (Lev-Lenegre disease). Brugada Syndrome (BS) is a form of id...
متن کاملSodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans.
Brugada syndrome is a genetic disease associated with sudden cardiac death that is characterized by ventricular fibrillation and right precordial ST segment elevation on ECG. Loss-of-function mutations in SCN5A, which encodes the predominant cardiac sodium channel alpha subunit NaV1.5, can cause Brugada syndrome and cardiac conduction disease. However, SCN5A mutations are not detected in the ma...
متن کاملHigh risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations.
OBJECTIVES We carried out a complete screening of the SCN5A gene in 38 Japanese patients with Brugada syndrome to investigate the genotype-phenotype relationship. BACKGROUND The gene SCN5A encodes the pore-forming alpha-subunit of voltage-gated cardiac sodium (Na) channel, which plays an important role in heart excitation/contraction. Mutations of SCN5A have been identified in 15% of patients...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012